PHYSICAL REVIEW E VOLUME 56, NUMBER 1 JULY 1997

Degenerate Rosenbluth Monte Carlo scheme for cluster counting and lattice animal enumeration
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We describe an algorithm for the Monte Carlo enumeration of clusters and lattice animals. The method may
also be used to calculate associated properties such as moments or perimeter multiplicities of the clusters. The
scheme is an adaptation of the Rosenbluth method for growing polymer chains and may be used to estimate the
number of distinct lattice animals on any lattice topology. The method is validated against exact and Monte
Carlo enumerations for clusters of size 30, on two- and three-dimensional simple-cubic lattices. The method
may be readily adapted to yield Boltzmann weighted averages over cly8&663-651X97)04807-1

PACS numbsgps): 02.70.Lq, 05.50tq

I. INTRODUCTION in a Boltzmann weighted scheme, it is likely that the skew-
ness will present less of a problem.

The enumeration of lattice animals has attracted consider-
able attention over the last 20 years. They are important in a
variety of physical problems including nucleatiphl, perco-
lation[2], and branched polymef8]. In the latter case ithas | this section we summarize the original Rosenbluth
been established that dilute branched polymers and latticgethod in order to clarify how it may be extended. The
animals belong to the same universality class, having an upnethod is a Monte Carlo technique which generates a sample
per critical dimension of §4]. ensemble ofN; self-avoiding chains of lengtN on a lattice

A site (bond lattice animal is a cluster o connected  which may be of arbitrary dimensionality and coordination
sites (bondg on a lattice with given symmetry and dimen- nymber. As each member of the ensemble is grown, a weight
sionality and we seek to enumerate all distinct animals withs constructed which subsequently allows the calculation of
a given number of siteonds. Exact enumeration has been ensemble averages of quantities associated with the chains

carried out for small lattice animals using a variety of meth- ; i Py

qu[2,5,6] but the_ metho_ds become computationally prohibi-il:(::]c E;seltfrjs\llro?o\{ii;a%ﬁ;;? (;)ff |g¥1§tr:|?ﬁ or the total number

tive for large ammals since the number of animalg be- Each chain in the ensemble is grown by placing an initial

haves asymptotically 4] segment on the lattice and then adding successive segments
to the end of the chain. If we consider a chain which already

ay=AN\N, (1) hasi segments, thei (+ 1)th segment is added to the end of
the chain by(a) assigning a normalized probability” for
the addition of the i(+1)th segment to one of the sites

where A and A depend on the type of lattice anfllis a adjacent to the end segment of the chélin;selecting one of

universal constant dependent on the dimensionality.. Man¥hese sitesw; , by simple Monte Carlo sampling, with prob-
techniques have been used to enumerate larger lattice ani: N '

mals including various Monte Carlo growth schen@s/— ability piwl; © repgating step&) and (b) until Fhe chain has

9], a constant fugacity Monte Carlo methftD], an incom- ~ 9rown to the required length; and (d) a weightW,,, de-

plete enumeration methdd], and reaction limited cluster- fined below, is associated with the construction of each

cluster aggregatiori3]. Many of these schemes generatemember,a, of the ensgmble. If it is |mp_055|_ble to complete

estimates which include a small, but unquantifiable, bias. the growth of the chain, because all directions are blocked,
In the following paper we describe a method based on af® weight for the chain is set to zero. This chain must be

extension of the scheme proposed by Rosenbluth and Roseii¢luded in the counting associated with the weighted aver-

bluth [11] for enumerating self-avoiding polymer chains. 29€ defined below. _ .

The scheme provides an estimate of the number of lattice Provided thak ,p;”=1, there is no necessity for all of the

animals and can also yield estimates of any other desirefl;’ to be equal, but this is usually adopted for the construc-

properties of the animals such as their radius of gyration otion of athermal chains. It is important that the choice of the

perimeter multiplicitieg 2]; the estimates are unbiased in the p;” allows the growth of all possible chairise., is ergodi¢

limit of large samples. A merit of the scheme is that forand it should be noted that the choice affects the way in

thermal systems it may be easily adapted to include Boltzwhich the method converges to the required averages. A

mann weightings following, for example, the arguments usedveighted average over the ensemble may be defined for any

by Siepmann and Frenk¢l?2] in the development of the propertyO, of the chains as follows:

configurational bias technique. A possible numerical limita-

tion of the method arises from the highly skewed probability 1 MNe

d|str|but|pn of Rosenblu_th weights which occurs for large <O>W:_E W,0,. )

cluster sizes. However, if only compact clusters are sampled N

II. ROSENBLUTH SCHEME
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The expectation value dO)yy is given by nae l G l
N (a)
1 E 711
E[O)wl=5~ 2 E[W,0,] 3 3
E a=1 -
CN
=2 (P,W,0,) 4
v=1 m 1] 5 5|2
where we have used to index the members of the ensemble 1 1
and » to index each of they possible chains of lengtN. 3 3
P, is the normalized probability of growing the chain —
given by (L3]I L {b3) (b4]
N
P,=1I1 p", (5) [4]s]2 [a]s]z]s][a]s][2]s]
=2 1 1 7
where pi‘”i is the probability of selecting adjacent site 3 3 3
during the growth of the chain. Rosenbluth and Rosenbluth o T
essentially chose (b5] (b6) b7)
W _i ©6) FIG. 1. Example of growth sequence for a cluster of seven la-
v P, beled bricks.(a) Final cluster with arbitrary labelingtbl)—(b7)
Unique growth sequence to achieve given labeled cluster using the
and with this choice it follows that algorithm described in Sec. 1l B 1.
CN
E[{O)w]= > o,. (7)  the growth can proceed. In the processlsdingrowth in the
v=1

original Rosenbluth scheme, the degeneracy is 1 since the
next segmenti.e., brick can only be added at the end of the
Hence chain. The calculation of the degeneracy associated with the
E[{1)wl=cn (g Process of selecting the site for attachment in this simple
' scheme is not trivial since it depends on the connectivity of
oy the final cluster. It is possible to evaluate the degeneracy by
E[(Rf)w]= 2 Rﬁ,ychRﬁ. (9) using .the Rosenpluth schem_e a second time, once the con-
v=1 nectivity of the final cluster is known. However, although
tractable, the time required to obtain ensemble averages to a
If the pi‘"i andW, are chosen appropriately, it is possible to given accuracy using this “double” Rosenbluth scheme
grow the chains with Boltzmann weightings and this is themakes the method unusable for any but the smallest clusters.
technique used in algorithms such as the configurational bias
schemd12]. B. Degenerate Rosenbluth scheme

1. A unique cluster growth sequence
Ill. CLUSTER GROWTH ALGORITHM

The problem of the degeneracy may be resolved if we
consider each of th& bricks used to build the cluster to

The result(8) raises the possibility that a Rosenbluth have a labelk which is an integer in the range 1,.,N
scheme could be adapted to enumerate lattice animals afclusive. We then construct a scheme which allows us to
properties associated with lattice animals. We thus considegenerate only once each of th# possible arrangements of
using the Rosenbluth scheme described above to generate e labeled bricks into givencluster shape; i.e., we force the
ensemble of lattice animals by successive addition oflegeneracy to b&l!. The algorithm described in the next
“bricks” to form a connected cluster oN occupied sites. section is based on the observation that for any given labeled
The only difference from the previous scheme is that duringN cluster it is possible to generate a unique growth sequence
the growth process, thé £ 1)th brick may be added tany by the following scheme which is illustrated in Fig. 1.
of the sites adjacenfi.e., vacant and connectedb the i (i) Select brickk=1 as the first brick.
cluster. This process will sample all possible lattice animals (ii) Identify all the bricks connected te=1 and select
but unfortunately introduces a degeneracy which must bg¢he brick with the lowest value of as the next brick.
evaluated if the exact number of lattice animals is to be enu- (iii) Repeat(ii) at each stage of the cluster growth, i.e.,
merated. Thus at each point in the cluster growth a choice iglentify all the bricks connected to the cluster of sizand
made of(a) the brick in thei cluster to which thei(+1)th  select the one with the lowest as the next brick in the
brick is to be attached and) the site adjacent to that brick growth sequence.
which is to be occupied. It is stef@ which introduces de- Figure Xa) shows an arbitrary cluster of seven labeled
generacy because of the number of different ways in whiclbricks and Figs. (b1)—1(b7) illustrate the unique growth se-

A. Simple scheme
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qguence by which the above scheme would generate this clus- (iv) For eachold adjacent site in theurrenttable of ad-

ter. In the following section we describe an algorithm whichjacent sites, set

enforces this growth sequence.

g q Km|new: max Km|o|dv’<s+ 1). (10)

If Kmlnew iS greater than thec value of any of the bricks

remaining to be placed, the site is removed from the list of
We construct an ensemble of clusters and for each clusterdjacent sites since no bricks could subsequently be placed at

we calculate a weight which we can subsequently use tthat site. Identifyjnewadjacent sites associated with the brick

calculate weighted averages of cluster properties. In participlaced at steii). In order to qualify as a new adjacent site,

lar, it can be seen from Eq8) that the average of the the site mustnot appear in the current table of adjacent sites.
weights is an estimate of the numtagy of lattice animals of Add the new adjacent sites to the list of adjacent sites and for

sizeN. each_n_ew Elo!jell(cent site, sef, to the lowestx value of the
wprinLer. FEMaining bricks.

We construct each_ clu_ster from a set of labele‘j .br'CkS ' The agjustment of the adjacent sites and their associated
the label on efiCh b,”Ck 1S denoted by an integer in the K is the key process in enforcing the unique cluster growth
range 1... N inclusive. As bricks are added to the cluster sequence described in Sec. Il BThus after a site and brick
we maintain a record of the set of sitas {n numbej which  have been selected at each stage of the cluster growth, the
are adjacent to the cluster, i.e., vacant and connected to thguster is surrounded by a set of old adjacent sites which
cluster. For each such adjacent site we record a quantitiyavenot been selected. It is essential in the future growth of
Kkm Which is the minimum value ok for a brick which may  the cluster that none of these sites be filled with a brick with
be placed in that adjacent site. The valuecgffor any given  a lower « value than the brick which has just been placed,;
adjacent site changes, in a manner described in detail belowtherwise this brick would be the one selected under the
as the cluster is grown. growth sequence described in Sec. Il B 1 and not the one

We begin each cluster growth by placing the brick withthat had just been placed. The adjustment in @) pre-
k=1 on the lattice and repeat the following steps until thevents such a choice. There is no restriction on the bricks
cluster is fully grown. which may be placed onew adjacent sites and hence the

(i) Select one of the adjacent sites as the site which is nexassociateds,, is set equal to the lowest value of the re-
to be occupied and delete the site from the list of availablemaining bricks.

2. The algorithm

adjacent sites. (v) Associate a weightV, = 1/(dyII{L,p"'p") with the
(i) Select one of the remaining bricks with /avalue  clyster, where the degenerady=N!. If it is impossible to
greater than the, for that adjacent site. complete the growth of the cluster, because all directions are
(iii) Add the brick to the cluster and remove it from the piocked, the weight for the cluster is set to zero. The degen-
set of available bricks. eracy factordy, for theN cluster arises front) a degeneracy
(iv) adjust the record of adjacent sites and their associategyctor of N associated with the placing of the first brick
Km Values. (which is the number of different ways of placing the first
(V) Accumulate the data necessary to calculate the weighrick within the clusterand (b) a factor of (N—1)! associ-
to be associated with the cluster. ated with the number of different ways of placing the re-
We now comment on each of these steps in more deta”maining (N—1) bricks which havex={2, ... N}. The

(i) The adjacent site to be used for the attachment of gyethod may be refined by noting that ensemble averages can
brick is chosen from the set o available adjacent sites by pe constructed foall clusters up to and including si2¢ by
simple Monte Carlo sampling with a probabilify’. This  setting the associated degeneraty for a cluster of size
probability may simply be chosen to Ipf=1/w, but more M to dy=M(N—1)!/(N—M)!. The degeneracy arises
powerful methods of constructing thg’ are described in the from a factorM associated with placing the first brick and a
next section. The value gf{’ associated with the selected factor (N—1)!/(N—M)! associated with the number of dif-
adjacent site is recorded for the subsequent evaluation of tHerent ways of placing the remainindi(— 1) bricks. Thus
weight W, to be associated with cluster. The selected data can be collected for all cluster sizes up to dizeimul-
adjacent site is removed from the table of adjacent sites. taneously, associating the Weigwazl/(dMHi'\":zpi‘“ipi"i)

(ii) A brick is selected from the subset of remaining bricksyith each cluster up té1=N.
which have k= k., where k., is the minimum allowedx Once an ensemble of clusters has been generated,
value for that adjacent site. The brick is chosen with a probyyejghted averages can be calculated.
ability p;*. Once again the brick may be selected with equal
probability from the subset of allowed bricks; however, a 3. An example cluster growth

more careful choice of the probabilitigg’ is preferable, as The way in which the algorithm achieves the growth se-
explained below. The value gf{* for the chosen brick is quence described in Sec. Ill B 1 is perhaps best seen by fol-
recorded to calculat#V, . In the following we assume that lowing through a simple example as shown in Fig. 2 for a
the selected brick hag=«. In practice it is possible to cluster of size 7 on a two-dimensional square lattice. Cluster
combine the choice of adjacent site and briisteps(i) and  sites are shown as large shaded squares and adjacent sites are
(ih)] into a single Monte Carlo decision. This is the methodshown as small unshaded squaresy adjacent sites are
used to obtain the results reported below. identified by a shaded triangle in the upper right hand corner

(iii ) The brick is added to the record of the current clusterof their square. The adjacent site chosen for the placement of
and removed from the list of available bricks. the next brick is identified by the black circle.
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FIG. 3. Probability distributiorP(In(W)) of the weightsW de-
termined from the growth of 1%610° clusters of sizeN=32 for
different values of the parametar The natural logarithm of the
expectation value of the weights is also shown.

smallest available brick. An adjacent site with,=2 is se-
lected by Monte Carlo sampling.

(iv) Figure Zd): A brick may be selected from any of the
remaining remaining bricks; the brick witkk=2 is selected. If the old
7 bricks adjacent sites have,, values less than-21, their «,, values
are adjusted to be 21, otherwise their,, values are left
unchanged. New adjacent sites have thegjr set to 4, the
lowest x value of the remaining bricks. Note thaj, values
of 3 and 4 are in fact equivalent since the lowest available
k value is 4. An adjacent site with,,= 3 is selected.

(v) Figures 2e)—2(g): The algorithm is repeated until the
cluster is complete.

The algorithm can only construct the given labeling of the
o) cluster in the sequence shown. Similarly, any other labeling

of this particular cluster shape can only be constructed by the

FIG. 2. Example of the growth of a cluster described in detail inalgorithm in one way. Hence, since there &te ways of
Sec. llIB 3. Each diagram shows the assigned bricks as largkabeling the cluster, we have ensured that an overall degen-
shaded squares, adjacent sites as small unshaded squares, andefacy ofN! is associated with every unique cluster shape.
new adjacent sites are identified by a shaded triangle in the upper
right hand corner. The bricks are labeled with theivalues and the

adjacent sites are labeled with theif,. The selected adjacent site 6.0 1 o = Rosenbluth error
at each step is identified by the black dot. *
© = Lam error
(i) Figure Za): The brick with k=1 is placed on the 4871 4 ="True" error
lattice and the founew adjacent sites have thei,, values 5 * = Fractional difference between N
set to 2, which is thec value of the lowest available brick. & 3.6 estimated values
One of the four adjacent sites is chosen by Monte Carlo g o
sampling from the available sites for the placement of the jg 24 ° o
next brick. s 08®
(i) Figure Zb): Brick number 3 is chosen by Monte Carlo o 000 0000?
sampling from the available bricks and placed in the selected 1.2 voo 936 *% . sor
adjacent site. The old adjacent sites have thgirvalues 00000 “e00 ° *
adjusted to be 3 1. The new adjacent sites have theijy, 0.0 .m.2$..oo@?2°°°°?° *ar * .
value set to 2, the value of the lowest available brick. An 0 6 12 18 24 30
adjacent site is chosen by Monte Carlo sampling. Cluster Size

(iii) Figure Zc): The chosen adjacent site hag=4 and
in this case only the bricks witk=4,5,6,7 are available for FIG. 4. Comparison of errors for the degenerate Rosenbluth
selection; brick 5 is selected by Monte Carlo sampling. Thémethod and the incomplete enumeration scheme of [4mThe
old adjacent sites have theif,, values set to 51 and the x symbol shows the absolute value of the fractional difference be-
new adjacent sites have thaeif, set to 2, thex value of the tween the estimates generated by the two methods.
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TABLE I. Degenerate Rosenbluth estimate of the number of lattice animals ofN\sipa a three-
dimensional square lattice using X.80" sample clusters, each grown b= 32 with A =0.90; exact values
from [4]; estimated values and associated errors from the incomplete enumeration method 6#]Lam
calculation of error estimate described in text; “true” error is the fractional difference between Rosenbluth
estimate and exact valug;and ¢ are defined in the text.

N Rosenbluth Exact Lary] e®st True Lam(4] X £
estimate value estimate (% errop (% errop (% errop
2 3.000x 1¢° 3 0.02 0.01 0.42 —0.02
3 1.500< 10 15 0.04 0.00 0.00 0.06
4 8.597x 10" 86 8.594x 10 0.04 0.04 0.51 0.86 —0.14
5 5.339< 107 534 5.32&107 0.06 0.02 0.54 0.39 0.55
6 3.485< 10° 3481 3.47%10° 0.06 0.11 0.58 1.64 0.40
7 2.352x10* 23502 2.35%10° 0.08 0.09 0.63 1.16 —0.46
8 1.629< 10° 162 913 1.63%x10° 0.09 0.01 0.65 0.12 —-0.11
9 1.154< 10° 1152 870 1.15%1C° 0.12 0.13 0.73 111 044
10 8.296< 1(° 8294 738 8.29%x1(° 0.14 0.01 0.86 0.10 0.24
11 6.050< 10 60 494 540 6.042 107 0.15 0.01 0.87 0.04 0.35
12 4.461x 10° 446 205 905 4.44210° 0.15 0.02 0.87 0.15 0.17
13 3.321x10° 3322769129 3.29110° 0.18 0.07 0.97 035 0.32
14 2.493 10% 2.461x 10° 0.20 1.09 0.60
15 1.884x 10" 1.862x 10* 0.20 1.16 0.13
16 1.434x 102 1.416x 10 0.23 1.22 0.22
17 1.095¢ 10%3 1.082x 10" 0.26 1.27 0.82
18 8.412< 10" 8.329x 10'3 0.25 1.37 0.02
19 6.507% 10" 6.446x 10 0.33 1.38 0.72
20 5.036< 10" 5.002x 10'° 0.39 1.41 0.16
21 3.917% 10% 3.897x 106 0.49 1.47 1.12
22 3.05% 10 3.052x 107 0.52 1.49 0.90
23 2.388<10% 2.391x 108 0.49 1.61 0.10
24  1.87x10% 1.877x< 10%° 0.74 1.68 0.89
25 1.462x 107° 1.480x 107° 0.93 1.70 0.92
26 1.165< 1071 1.168x 107 1.22 1.75 0.93
27 9.321x 10#* 9.209x 107* 2.80 1.81 4.33
28 7.251x 1072 7.290x 1072 2.97 1.88 4.72
29 5.555¢ 1073 5.786x 1073 1.90 1.96 0.66
30 4.35%10% 4.610x 107 2.34 2.01 1.17
4. Choice of sampling probabilities were explored for attaching higher probabilities to the bricks

with lower « values. It was found empirically that the skew-

m";n%””f'g'; Lhee ocfhgrl]ce fg:n:hfc‘fr’gr‘s‘i‘gﬁf‘wtrgb;b'(')'glejt ness of the distribution could be significantly reduced if the
Pi Pi y g Y. pi was chosen such thpf«\* where I=\=0. It is impor-

However, it is found that the probability distributigh(W) .tant to note thah should not be made too small otherwise

of weights associated W'.th clusters of a gIVen SIz€ IS approXiy, o yistribution once again becomes highly skew because the
mately log normal as might be expected since it arises from

the multiplication of a large number of random variables.brICkS with high« occur with only very small probabilities

The log-normal distribution is highly skewed and the skew-bUt correspondingly very large weights. The probabifiy

ness becomes increasingly marked as the cluster size i f an adjacent site being selected was made proportional to

. e | i
errors arise in the sampling of the mean and this makes tha e P ' P

calculation of results for large clusters computationally pro_gtkzr\;/\n\:avss gg(()\?\?)naer}]rcrj]Ft)gtlacig)llﬁégro?ﬁlvssnéot;argglr\?vlitzhe g::h
hibitive. The aim of any scheme must therefore be to mini-_"
rick were not changed as the cluster grew. The effect of

mize the variance of the probabilities used in constructingb . o L

the weights. changing\ is illustrated in Fig. 3.
If every brick is given equal weight there is a reasonable

chance that early bricks attached to the cluster will have high

« values and this leads to a significant reduction in the num- Table | shows the results of using the method to enumer-

ber of available sites for growth and consequerRI{wV) ate lattice animals up to size 32 on a simple cubic three-

becomes dominated by low weights. A number of schemesimensional lattice by sampling a total of X80 clusters

5. Evaluation of the algorithm
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TABLE Il. Degenerate Rosenbluth estimate of the number of lattice animals ofNsipa a two-
dimensional square lattice using %30’ sample clusters, each grownltb=32 with A =0.92; exact results
from [6]; calculation of error estimate described in the text; “true” error is the fractional difference between
Rosenbluth estimate and the true valyeand ¢ are defined in the text.

N Rosenbluth Exact e®st True X £
estimate value (% errom (% errom
2 2.000< 1¢° 2 0.01 0.01 0.83 0.01
3 6.000x 10° 6 0.02 0.01 0.29 -0.51
4 1.900x 10 19 0.02 0.01 0.51 -0.14
5 6.301x 10" 63 0.02 0.02 0.75 0.09
6 2.160x 107 216 0.02 0.02 0.75 —-0.04
7 7.602< 107 760 0.03 0.03 1.06 —0.60
8 2.725< 10° 2 725 0.03 0.01 0.44 0.19
9 9.915< 10° 9910 0.04 0.05 1.19 —-0.30
10 3.645¢10* 36 446 0.04 0.01 0.32 -0.33
11 1.35% 10° 135 268 0.05 0.05 090 -0.30
12 5.055< 10° 505 861 0.05 0.07 140 —0.37
13 1.903< 10° 1 903 890 0.06 0.05 0.94 0.12
14 7.204< 10° 7 204 874 0.06 0.01 0.23 0.39
15 2.740< 10 27 394 666 0.08 0.02 0.30 0.91
16 1.046< 108 104 592 937 0.07 0.01 0.09 0.09
17 4.004< 10° 400 795 844 0.10 0.10 0.98 0.30
18 1.536¢10° 1 540 820 542 0.11 0.31 2.94 0.18
19 5.923% 10° 5 940 738 676 0.13 0.30 224 —0.42
20 2.293 10 0.20 0.25
21 8.899< 10%° 0.29 0.36
22 3.461x 10% 0.38 0.94
23 1.343 10" 0.40 0.99
24 5.208< 10* 0.44 0.59
25 2.048<10% 0.75 1.25
26 7.990x 10+ 0.85 1.94
27 3.131x 10% 0.98 1.31
28 1.229¢ 10 2.02 4.36
29 4.767 10'° 1.80 1.73
30 1.809 106 3.27 5.06
with A =0.90. Results are not quoted fidr=31 andN=32 Exact results are known for clusters up to size/4Band

since the errors were unacceptably large. It took approxiin the table we quote the values for the quantitgefined by
mately two hours to collect the data on an R5000 Silicon

Graphics workstation using code written in the language f/faCt_ agy
The results are quoted together with a standard esfdr XM= |~ exacgest 12
calculated by breaking the data into 50 blocks and determin- MM

ing the variance of the block means for each cluster size. If ]

the number of samples in each block is sufficient, it foIIows""QS(tj it can be seen that all the valuesxobire O(1). Thus
from the central limit theorem that the sampling distribution € represents an acceptable method of estimating the error
of the means should become reasonably symmetrical. Wi the simulation for the smaller clusters. However, it is
therefore also quote skewnesg defined by[13] likely that the e® will underestimate the true error if the
distribution becomes more skewed. We also quote in Table |
the values ofy calculated by Lanj4] using a Monte Carlo
incomplete enumeration method together with his error esti-
mates for this method. It can be seen from Fig. 4 that the
wherem, is theith moment about the mean of the samplingdegenerate Rosenbluth method described in this paper gives
distribution. It is expected that<0.5 for a symmetrical dis- significantly smaller errors, except for the very largest clus-
tribution andé>1 for a highly skew distribution. The statis- ters. It should be noted that the Lam data were calculated
tic £ should be treated with some caution since it is likely towith 2 h of CPUtime on a Cyber 76 computer.

be subject to considerable error because it involves the cal- In Table Il we quote data collected from a square two-
culation of a third moment from a limited number of data dimensional lattice by collecting data from X80’ clusters

points. up to size 32 withh =0.92. These data took the same time to

g=my/m3’?, (12)
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collect as the data for the three-dimensional lattice and comerrors associated with the incomplete enumeration method
parison is given with exact resulfs] up to clusters of size rise linearly whereas those associated with the Rosenbluth
19. It is of interest to note that the errors associated with thénethod increase in a nonlinear fashion. It is possible that an
degenerate Rosenbluth method appear to grow with clustedternative scheme for the choice gif andp;” can be found
size at essentially the same rate for both the two- and thregvhich will reduce the skewness of the probability distribu-
dimensional lattices. This suggests that the technique matjon P(W) of the Rosenbluth weights and hence increases

work well in higher dimensions. the size ofN for which the method can be employed. A
possible method may include multilink additiofesg.,[14])
IV. CONCLUSIONS in which several bricks are added simultaneously.

However, the degenerate Rosenbluth method can be
We have described a degenerate Rosenbluth scheme fagadily extended to include Boltzmann weights following,

the enumeration of lattice animals and demonstrated its vifor example, the techniques used in configurational kids
ability for clusters up to size 30 on two- and three- It is likely that the errors associated with compact clusters in
dimensional simple-cubic lattices. The results suggest thahe presence of Boltzmann weight may extend the range of
the method is computationally more effective than the in-usableN because of the more limited range of clusters which
complete enumeration method of Lam except for the largest being sampled. The method may also be adapted to count
clusters where the former method may be superior becaussusters of chains and such an algorithm is currently being
the errors appear more controlled. Thus it appears that thgeveloped by the author.
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