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Degenerate Rosenbluth Monte Carlo scheme for cluster counting and lattice animal enumeration

C. M. Care
Materials Research Institute, Sheffield Hallam University, Pond Street, Sheffield S1 1WB, England

~Received 2 January 1997!

We describe an algorithm for the Monte Carlo enumeration of clusters and lattice animals. The method may
also be used to calculate associated properties such as moments or perimeter multiplicities of the clusters. The
scheme is an adaptation of the Rosenbluth method for growing polymer chains and may be used to estimate the
number of distinct lattice animals on any lattice topology. The method is validated against exact and Monte
Carlo enumerations for clusters of size 30, on two- and three-dimensional simple-cubic lattices. The method
may be readily adapted to yield Boltzmann weighted averages over clusters.@S1063-651X~97!04807-1#

PACS number~s!: 02.70.Lq, 05.50.1q
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I. INTRODUCTION

The enumeration of lattice animals has attracted consi
able attention over the last 20 years. They are important
variety of physical problems including nucleation@1#, perco-
lation @2#, and branched polymers@3#. In the latter case it has
been established that dilute branched polymers and la
animals belong to the same universality class, having an
per critical dimension of 8@4#.

A site ~bond! lattice animal is a cluster ofN connected
sites ~bonds! on a lattice with given symmetry and dimen
sionality and we seek to enumerate all distinct animals w
a given number of sites~bonds!. Exact enumeration has bee
carried out for small lattice animals using a variety of me
ods@2,5,6# but the methods become computationally prohi
tive for large animals since the number of animalsaN be-
haves asymptotically as@6#

aN5ANulN, ~1!

whereA and l depend on the type of lattice andu is a
universal constant dependent on the dimensionality. M
techniques have been used to enumerate larger lattice
mals including various Monte Carlo growth schemes@2,7–
9#, a constant fugacity Monte Carlo method@10#, an incom-
plete enumeration method@4#, and reaction limited cluster
cluster aggregation@3#. Many of these schemes genera
estimates which include a small, but unquantifiable, bias

In the following paper we describe a method based on
extension of the scheme proposed by Rosenbluth and Ro
bluth @11# for enumerating self-avoiding polymer chain
The scheme provides an estimate of the number of lat
animals and can also yield estimates of any other des
properties of the animals such as their radius of gyration
perimeter multiplicities@2#; the estimates are unbiased in t
limit of large samples. A merit of the scheme is that f
thermal systems it may be easily adapted to include Bo
mann weightings following, for example, the arguments u
by Siepmann and Frenkel@12# in the development of the
configurational bias technique. A possible numerical limi
tion of the method arises from the highly skewed probabi
distribution of Rosenbluth weights which occurs for lar
cluster sizes. However, if only compact clusters are samp
561063-651X/97/56~1!/1181~7!/$10.00
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in a Boltzmann weighted scheme, it is likely that the ske
ness will present less of a problem.

II. ROSENBLUTH SCHEME

In this section we summarize the original Rosenblu
method in order to clarify how it may be extended. T
method is a Monte Carlo technique which generates a sam
ensemble ofNE self-avoiding chains of lengthN on a lattice
which may be of arbitrary dimensionality and coordinati
number. As each member of the ensemble is grown, a we
is constructed which subsequently allows the calculation
ensemble averages of quantities associated with the ch
such as their average radii of gyrationRN

2 or the total number
cN of self-avoiding chains of lengthN.

Each chain in the ensemble is grown by placing an ini
segment on the lattice and then adding successive segm
to the end of the chain. If we consider a chain which alrea
hasi segments, the (i11)th segment is added to the end
the chain by~a! assigning a normalized probabilitypi

v for
the addition of the (i11)th segment to one of thev sites
adjacent to the end segment of the chain;~b! selecting one of
these sites,v i , by simple Monte Carlo sampling, with prob
ability pi

v i ; ~c! repeating steps~a! and~b! until the chain has
grown to the required lengthN; and ~d! a weightWa , de-
fined below, is associated with the construction of ea
member,a, of the ensemble. If it is impossible to comple
the growth of the chain, because all directions are block
the weight for the chain is set to zero. This chain must
included in the counting associated with the weighted av
age defined below.

Provided that(vpi
v51, there is no necessity for all of th

pi
v to be equal, but this is usually adopted for the constr

tion of athermal chains. It is important that the choice of t
pi

v allows the growth of all possible chains~i.e., is ergodic!
and it should be noted that the choice affects the way
which the method converges to the required averages
weighted average over the ensemble may be defined for
propertyOa of the chains as follows:

^O&W5
1

NE
(
a51

NE

WaOa . ~2!
1181 © 1997 The American Physical Society
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1182 56C. M. CARE
The expectation value of̂O&W is given by

E@^O&W#5
1

NE
(
a51

NE

E@WaOa# ~3!

5 (
n51

cN

~PnWnOn! ~4!

where we have useda to index the members of the ensemb
andn to index each of thecN possible chains of lengthN.
Pn is the normalized probability of growing the chainn
given by

Pn5)
i52

N

pi
v i , ~5!

where pi
v i is the probability of selecting adjacent sitev i

during the growth of the chain. Rosenbluth and Rosenb
essentially chose

Wn5
1

Pn
~6!

and with this choice it follows that

E@^O&W#5 (
n51

cN

On . ~7!

Hence

E@^1&W#5cN , ~8!

E@^Rn
2&W#5 (

n51

cN

RNn
2 5cNRN

2 . ~9!

If the pi
v i andWn are chosen appropriately, it is possible

grow the chains with Boltzmann weightings and this is t
technique used in algorithms such as the configurational
scheme@12#.

III. CLUSTER GROWTH ALGORITHM

A. Simple scheme

The result ~8! raises the possibility that a Rosenblu
scheme could be adapted to enumerate lattice animals
properties associated with lattice animals. We thus cons
using the Rosenbluth scheme described above to genera
ensemble of lattice animals by successive addition
‘‘bricks’’ to form a connected cluster ofN occupied sites.
The only difference from the previous scheme is that dur
the growth process, the (i11)th brick may be added toany
of the sites adjacent~i.e., vacant and connected! to the i
cluster. This process will sample all possible lattice anim
but unfortunately introduces a degeneracy which must
evaluated if the exact number of lattice animals is to be e
merated. Thus at each point in the cluster growth a choic
made of~a! the brick in thei cluster to which the (i11)th
brick is to be attached and~b! the site adjacent to that bric
which is to be occupied. It is step~a! which introduces de-
generacy because of the number of different ways in wh
th
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the growth can proceed. In the process ofchaingrowth in the
original Rosenbluth scheme, the degeneracy is 1 since
next segment~i.e., brick! can only be added at the end of th
chain. The calculation of the degeneracy associated with
process of selecting the site for attachment in this sim
scheme is not trivial since it depends on the connectivity
the final cluster. It is possible to evaluate the degeneracy
using the Rosenbluth scheme a second time, once the
nectivity of the final cluster is known. However, althoug
tractable, the time required to obtain ensemble averages
given accuracy using this ‘‘double’’ Rosenbluth schem
makes the method unusable for any but the smallest clus

B. Degenerate Rosenbluth scheme

1. A unique cluster growth sequence

The problem of the degeneracy may be resolved if
consider each of theN bricks used to build the cluster t
have a labelk which is an integer in the range 1,. . . ,N
inclusive. We then construct a scheme which allows us
generate only once each of theN! possible arrangements o
the labeled bricks into agivencluster shape; i.e., we force th
degeneracy to beN!. The algorithm described in the nex
section is based on the observation that for any given lab
N cluster it is possible to generate a unique growth seque
by the following scheme which is illustrated in Fig. 1.

~i! Select brickk51 as the first brick.
~ii ! Identify all the bricks connected tok51 and select

the brick with the lowest value ofk as the next brick.
~iii ! Repeat~ii ! at each stage of the cluster growth, i.e

identify all the bricks connected to the cluster of sizei and
select the one with the lowestk as the next brick in the
growth sequence.

Figure 1~a! shows an arbitrary cluster of seven label
bricks and Figs. 1~b1!–1~b7! illustrate the unique growth se

FIG. 1. Example of growth sequence for a cluster of seven
beled bricks.~a! Final cluster with arbitrary labeling.~b1!–~b7!
Unique growth sequence to achieve given labeled cluster using
algorithm described in Sec. III B 1.
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56 1183DEGENERATE ROSENBLUTH MONTE CARLO SCHEME . . .
quence by which the above scheme would generate this c
ter. In the following section we describe an algorithm whi
enforces this growth sequence.

2. The algorithm

We construct an ensemble of clusters and for each clu
we calculate a weight which we can subsequently use
calculate weighted averages of cluster properties. In part
lar, it can be seen from Eq.~8! that the average of the
weights is an estimate of the numberaN of lattice animals of
sizeN.

We construct each cluster from a set of labeled ‘‘bricks
the label on each brick is denoted byk, an integer in the
range 1, . . . ,N inclusive. As bricks are added to the clust
we maintain a record of the set of sites (v in number! which
are adjacent to the cluster, i.e., vacant and connected to
cluster. For each such adjacent site we record a qua
km which is the minimum value ofk for a brick which may
be placed in that adjacent site. The value ofkm for any given
adjacent site changes, in a manner described in detail be
as the cluster is grown.

We begin each cluster growth by placing the brick w
k51 on the lattice and repeat the following steps until t
cluster is fully grown.

~i! Select one of the adjacent sites as the site which is n
to be occupied and delete the site from the list of availa
adjacent sites.

~ii ! Select one of the remaining bricks with ak value
greater than thekm for that adjacent site.

~iii ! Add the brick to the cluster and remove it from th
set of available bricks.

~iv! adjust the record of adjacent sites and their associ
km values.

~v! Accumulate the data necessary to calculate the we
to be associated with the cluster.

We now comment on each of these steps in more det
~i! The adjacent site to be used for the attachment o

brick is chosen from the set ofv available adjacent sites b
simple Monte Carlo sampling with a probabilitypi

v . This
probability may simply be chosen to bepi

v51/v, but more
powerful methods of constructing thepi

v are described in the
next section. The value ofpi

v associated with the selecte
adjacent site is recorded for the subsequent evaluation o
weight Wa to be associated with clustera. The selected
adjacent site is removed from the table of adjacent sites

~ii ! A brick is selected from the subset of remaining bric
which havek>km where km is the minimum allowedk
value for that adjacent site. The brick is chosen with a pr
ability pi

k . Once again the brick may be selected with eq
probability from the subset of allowed bricks; however,
more careful choice of the probabilitiespi

k is preferable, as
explained below. The value ofpi

k for the chosen brick is
recorded to calculateWa . In the following we assume tha
the selected brick hask5ks . In practice it is possible to
combine the choice of adjacent site and brick@steps~i! and
~ii !# into a single Monte Carlo decision. This is the meth
used to obtain the results reported below.

~iii ! The brick is added to the record of the current clus
and removed from the list of available bricks.
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~iv! For eachold adjacent site in thecurrent table of ad-
jacent sites, set

kmunew5max~kmuold ,ks11!. ~10!

If kmunew is greater than thek value of any of the bricks
remaining to be placed, the site is removed from the list
adjacent sites since no bricks could subsequently be place
that site. Identifynewadjacent sites associated with the bri
placed at step~ii !. In order to qualify as a new adjacent sit
the site must not appear in the current table of adjacent s
Add the new adjacent sites to the list of adjacent sites and
each new adjacent site, setkm to the lowestk value of the
remaining bricks.

The adjustment of the adjacent sites and their associa
km is the key process in enforcing the unique cluster grow
sequence described in Sec. III B 1. Thus after a site and brick
have been selected at each stage of the cluster growth
cluster is surrounded by a set of old adjacent sites wh
havenot been selected. It is essential in the future growth
the cluster that none of these sites be filled with a brick w
a lowerk value than the brick which has just been place
otherwise this brick would be the one selected under
growth sequence described in Sec. III B 1 and not the
that had just been placed. The adjustment in Eq.~10! pre-
vents such a choice. There is no restriction on the bri
which may be placed onnew adjacent sites and hence th
associatedkm is set equal to the lowestk value of the re-
maining bricks.

~v! Associate a weightWa51/(dN) i52
N pi

v ipi
k i) with the

cluster, where the degeneracydN5N!. If it is impossible to
complete the growth of the cluster, because all directions
blocked, the weight for the cluster is set to zero. The deg
eracy factordN for theN cluster arises from~a! a degeneracy
factor of N associated with the placing of the first bric
~which is the number of different ways of placing the fir
brick within the cluster! and ~b! a factor of (N21)! associ-
ated with the number of different ways of placing the r
maining (N21) bricks which havek5$2, . . . ,N%. The
method may be refined by noting that ensemble averages
be constructed forall clusters up to and including sizeN by
setting the associated degeneracydM for a cluster of size
M to dM5M (N21)!/(N2M )!. The degeneracy arise
from a factorM associated with placing the first brick and
factor (N21)!/(N2M )! associated with the number of dif
ferent ways of placing the remaining (M21) bricks. Thus
data can be collected for all cluster sizes up to sizeN simul-
taneously, associating the weightWa51/(dM) i52

M pi
v ipi

k i)
with each cluster up toM5N.

Once an ensemble of clusters has been genera
weighted averages can be calculated.

3. An example cluster growth

The way in which the algorithm achieves the growth s
quence described in Sec. III B 1 is perhaps best seen by
lowing through a simple example as shown in Fig. 2 for
cluster of size 7 on a two-dimensional square lattice. Clus
sites are shown as large shaded squares and adjacent sit
shown as small unshaded squares;new adjacent sites are
identified by a shaded triangle in the upper right hand cor
of their square. The adjacent site chosen for the placemen
the next brick is identified by the black circle.
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~i! Figure 2~a!: The brick with k51 is placed on the
lattice and the fournewadjacent sites have theirkm values
set to 2, which is thek value of the lowest available brick
One of the four adjacent sites is chosen by Monte Ca
sampling from the available sites for the placement of
next brick.

~ii ! Figure 2~b!: Brick number 3 is chosen by Monte Car
sampling from the available bricks and placed in the selec
adjacent site. The old adjacent sites have theirkm values
adjusted to be 311. The new adjacent sites have theirkm
value set to 2, thek value of the lowest available brick. An
adjacent site is chosen by Monte Carlo sampling.

~iii ! Figure 2~c!: The chosen adjacent site haskm54 and
in this case only the bricks withk54,5,6,7 are available fo
selection; brick 5 is selected by Monte Carlo sampling. T
old adjacent sites have theirkm values set to 511 and the
new adjacent sites have theirkm set to 2, thek value of the

FIG. 2. Example of the growth of a cluster described in detai
Sec. III B 3. Each diagram shows the assigned bricks as la
shaded squares, adjacent sites as small unshaded squares, a
newadjacent sites are identified by a shaded triangle in the up
right hand corner. The bricks are labeled with theirk values and the
adjacent sites are labeled with theirkm . The selected adjacent sit
at each step is identified by the black dot.
o
e

d

e

smallest available brick. An adjacent site withkm52 is se-
lected by Monte Carlo sampling.

~iv! Figure 2~d!: A brick may be selected from any of th
remaining bricks; the brick withk52 is selected. If the old
adjacent sites havekm values less than 211, theirkm values
are adjusted to be 211, otherwise theirkm values are left
unchanged. New adjacent sites have theirkm set to 4, the
lowestk value of the remaining bricks. Note thatkm values
of 3 and 4 are in fact equivalent since the lowest availa
k value is 4. An adjacent site withkm53 is selected.

~v! Figures 2~e!–2~g!: The algorithm is repeated until th
cluster is complete.

The algorithm can only construct the given labeling of t
cluster in the sequence shown. Similarly, any other labe
of this particular cluster shape can only be constructed by
algorithm in one way. Hence, since there areN! ways of
labeling the cluster, we have ensured that an overall deg
eracy ofN! is associated with every unique cluster shape
e
d the
er

FIG. 3. Probability distributionP„ln(W)… of the weightsW de-
termined from the growth of 1.63106 clusters of sizeN532 for
different values of the parameterl. The natural logarithm of the
expectation value of the weights is also shown.

FIG. 4. Comparison of errors for the degenerate Rosenb
method and the incomplete enumeration scheme of Lam@4#. The
! symbol shows the absolute value of the fractional difference
tween the estimates generated by the two methods.
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TABLE I. Degenerate Rosenbluth estimate of the number of lattice animals of sizeN on a three-
dimensional square lattice using 1.83107 sample clusters, each grown toN532 with l50.90; exact values
from @4#; estimated values and associated errors from the incomplete enumeration method of La@4#;
calculation of error estimate described in text; ‘‘true’’ error is the fractional difference between Rosen
estimate and exact value;x andj are defined in the text.

N Rosenbluth Exact Lam@4# eest True Lam@4# x j
estimate value estimate ~% error! ~% error! ~% error!

2 3.0003100 3 0.02 0.01 0.42 20.02
3 1.5003101 15 0.04 0.00 0.00 0.06
4 8.5973101 86 8.5943101 0.04 0.04 0.51 0.86 20.14
5 5.3393102 534 5.3213102 0.06 0.02 0.54 0.39 0.55
6 3.4853103 3 481 3.4753103 0.06 0.11 0.58 1.64 0.40
7 2.3523104 23 502 2.3533104 0.08 0.09 0.63 1.16 20.46
8 1.6293105 162 913 1.6313105 0.09 0.01 0.65 0.12 20.11
9 1.1543106 1 152 870 1.1553106 0.12 0.13 0.73 1.11 0.44
10 8.2963106 8 294 738 8.2913106 0.14 0.01 0.86 0.10 0.24
11 6.0503107 60 494 540 6.0423107 0.15 0.01 0.87 0.04 0.35
12 4.4613108 446 205 905 4.4423108 0.15 0.02 0.87 0.15 0.17
13 3.3213109 3 322 769 129 3.2913109 0.18 0.07 0.97 0.35 0.32
14 2.49331010 2.46131010 0.20 1.09 0.60
15 1.88431011 1.86231011 0.20 1.16 0.13
16 1.43431012 1.41631012 0.23 1.22 0.22
17 1.09531013 1.08231013 0.26 1.27 0.82
18 8.41231013 8.32931013 0.25 1.37 0.02
19 6.50731014 6.44631014 0.33 1.38 0.72
20 5.03631015 5.00231015 0.39 1.41 0.16
21 3.91731016 3.89731016 0.49 1.47 1.12
22 3.05931017 3.05231017 0.52 1.49 0.90
23 2.38831018 2.39131018 0.49 1.61 0.10
24 1.87231019 1.87731019 0.74 1.68 0.89
25 1.46131020 1.48031020 0.93 1.70 0.92
26 1.16531021 1.16831021 1.22 1.75 0.93
27 9.32131021 9.20931021 2.80 1.81 4.33
28 7.25131022 7.29031022 2.97 1.88 4.72
29 5.55531023 5.78631023 1.90 1.96 0.66
30 4.35931024 4.61031024 2.34 2.01 1.17
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4. Choice of sampling probabilities

In principle, the choice of thenormalizedprobabilities
pi

v and pi
k can be of any form consistent with ergodicit

However, it is found that the probability distributionP(W)
of weights associated with clusters of a given size is appr
mately log normal as might be expected since it arises fr
the multiplication of a large number of random variable
The log-normal distribution is highly skewed and the ske
ness becomes increasingly marked as the cluster size
creases. Unless a careful choice is made ofpi

v andpi
k , large

errors arise in the sampling of the mean and this makes
calculation of results for large clusters computationally p
hibitive. The aim of any scheme must therefore be to m
mize the variance of the probabilities used in construct
the weights.

If every brick is given equal weight there is a reasona
chance that early bricks attached to the cluster will have h
k values and this leads to a significant reduction in the nu
ber of available sites for growth and consequentlyP(W)
becomes dominated by low weights. A number of schem
i-
m
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were explored for attaching higher probabilities to the bric
with lower k values. It was found empirically that the skew
ness of the distribution could be significantly reduced if t
pi

k was chosen such thatpi
k}lk where 1>l>0. It is impor-

tant to note thatl should not be made too small otherwis
the distribution once again becomes highly skew because
bricks with highk occur with only very small probabilities
but correspondingly very large weights. The probabilitypi

v

of an adjacent site being selected was made proportiona
the sum of the weights,lk, for the bricks available at tha
site. In the collection of the data presented below, the par
eterl was chosen empirically, for givenN, to minimize the
skewness ofP(W) and the values ofl associated with each
brick were not changed as the cluster grew. The effec
changingl is illustrated in Fig. 3.

5. Evaluation of the algorithm

Table I shows the results of using the method to enum
ate lattice animals up to size 32 on a simple cubic thr
dimensional lattice by sampling a total of 1.83107 clusters
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TABLE II. Degenerate Rosenbluth estimate of the number of lattice animals of sizeN on a two-
dimensional square lattice using 3.53107 sample clusters, each grown toN532 with l50.92; exact results
from @6#; calculation of error estimate described in the text; ‘‘true’’ error is the fractional difference betw
Rosenbluth estimate and the true value;x andj are defined in the text.

N Rosenbluth Exact eest True x j
estimate value ~% error! ~% error!

2 2.0003100 2 0.01 0.01 0.83 0.01
3 6.0003100 6 0.02 0.01 0.29 20.51
4 1.9003101 19 0.02 0.01 0.51 20.14
5 6.3013101 63 0.02 0.02 0.75 0.09
6 2.1603102 216 0.02 0.02 0.75 20.04
7 7.6023102 760 0.03 0.03 1.06 20.60
8 2.7253103 2 725 0.03 0.01 0.44 0.19
9 9.9153103 9 910 0.04 0.05 1.19 20.30
10 3.6453104 36 446 0.04 0.01 0.32 20.33
11 1.3533105 135 268 0.05 0.05 0.90 20.30
12 5.0553105 505 861 0.05 0.07 1.40 20.37
13 1.9033106 1 903 890 0.06 0.05 0.94 0.12
14 7.2043106 7 204 874 0.06 0.01 0.23 0.39
15 2.7403107 27 394 666 0.08 0.02 0.30 0.91
16 1.0463108 104 592 937 0.07 0.01 0.09 0.09
17 4.0043108 400 795 844 0.10 0.10 0.98 0.30
18 1.5363109 1 540 820 542 0.11 0.31 2.94 0.18
19 5.9233109 5 940 738 676 0.13 0.30 2.24 20.42
20 2.29331010 0.20 0.25
21 8.89931010 0.29 0.36
22 3.46131011 0.38 0.94
23 1.34331012 0.40 0.99
24 5.20831012 0.44 0.59
25 2.04831013 0.75 1.25
26 7.99031013 0.85 1.94
27 3.13131014 0.98 1.31
28 1.22931015 2.02 4.36
29 4.76731015 1.80 1.73
30 1.80931016 3.27 5.06
x
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with l50.90. Results are not quoted forN531 andN532
since the errors were unacceptably large. It took appro
mately two hours to collect the data on an R5000 Silic
Graphics workstation using code written in the languageC.
The results are quoted together with a standard erroreest

calculated by breaking the data into 50 blocks and determ
ing the variance of the block means for each cluster size
the number of samples in each block is sufficient, it follo
from the central limit theorem that the sampling distributi
of the means should become reasonably symmetrical.
therefore also quote askewnessj defined by@13#

j5m3 /m2
3/2, ~11!

wheremi is the i th moment about the mean of the sampli
distribution. It is expected thatj&0.5 for a symmetrical dis-
tribution andj.1 for a highly skew distribution. The statis
tic j should be treated with some caution since it is likely
be subject to considerable error because it involves the
culation of a third moment from a limited number of da
points.
i-
n

n-
If

e

al-

Exact results are known for clusters up to size 13@4# and
in the table we quote the values for the quantityx defined by

xM5UaMexact2aM
est

aM
exacteM

est U ~12!

and it can be seen that all the values ofx areO(1). Thus
eest represents an acceptable method of estimating the e
in the simulation for the smaller clusters. However, it
likely that the eest will underestimate the true error if th
distribution becomes more skewed. We also quote in Tab
the values ofaN calculated by Lam@4# using a Monte Carlo
incomplete enumeration method together with his error e
mates for this method. It can be seen from Fig. 4 that
degenerate Rosenbluth method described in this paper g
significantly smaller errors, except for the very largest clu
ters. It should be noted that the Lam data were calcula
with 2 h of CPUtime on a Cyber 76 computer.

In Table II we quote data collected from a square tw
dimensional lattice by collecting data from 3.53107 clusters
up to size 32 withl50.92. These data took the same time
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collect as the data for the three-dimensional lattice and c
parison is given with exact results@6# up to clusters of size
19. It is of interest to note that the errors associated with
degenerate Rosenbluth method appear to grow with clu
size at essentially the same rate for both the two- and th
dimensional lattices. This suggests that the technique
work well in higher dimensions.

IV. CONCLUSIONS

We have described a degenerate Rosenbluth schem
the enumeration of lattice animals and demonstrated its
ability for clusters up to size 30 on two- and thre
dimensional simple-cubic lattices. The results suggest
the method is computationally more effective than the
complete enumeration method of Lam except for the larg
clusters where the former method may be superior beca
the errors appear more controlled. Thus it appears that
-

e
er
e-
ay

for
i-

at
-
st
se
he

errors associated with the incomplete enumeration met
rise linearly whereas those associated with the Rosenb
method increase in a nonlinear fashion. It is possible tha
alternative scheme for the choice ofpi

v andpi
v can be found

which will reduce the skewness of the probability distrib
tion P(W) of the Rosenbluth weights and hence increa
the size ofN for which the method can be employed.
possible method may include multilink additions~e.g.,@14#!
in which several bricks are added simultaneously.

However, the degenerate Rosenbluth method can
readily extended to include Boltzmann weights followin
for example, the techniques used in configurational bias@12#.
It is likely that the errors associated with compact clusters
the presence of Boltzmann weight may extend the range
usableN because of the more limited range of clusters wh
is being sampled. The method may also be adapted to c
clusters of chains and such an algorithm is currently be
developed by the author.
e
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